On a decomposition of Hardy--Hilbert's type inequality
نویسندگان
چکیده مقاله:
In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.
منابع مشابه
on a decomposition of hardy--hilbert's type inequality
in this paper, two pairs of new inequalities are given, which decompose two hilbert-type inequalities.
متن کاملon a decomposition of hardy--hilbert's type inequality
in this paper, two pairs of new inequalities are given, which decompose two hilbert-type inequalities.
متن کاملOn a strengthened Hardy-Hilbert’s type inequality
In this paper, by using the Euler-Maclaurin expansion for the zeta function and estimating the weight function effectively, we derive a strengthenment of a Hardy-Hilbert’s type inequality proved by W.Y. Zhong. As applications, some particular results are considered.
متن کاملOn a strengthened Hardy-Hilbert type inequality
*Correspondence: [email protected] 2Department of Construction and Information Engineering, Guangxi Modern Vocational Technology College, Hechi, Guangxi 547000, China Full list of author information is available at the end of the article Abstract We derive a strengthenment of a Hardy-Hilbert type inequality by using the Euler-Maclaurin expansion for the zeta function and estimating the weight...
متن کاملOn a Hardy-Hilbert-Type Inequality with a General Homogeneous Kernel
By the method of weight coefficients and techniques of real analysis, a Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. The equivalent forms, the operator expressions with the norm, the reverses and some particular examples are also considered.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 38 شماره 1
صفحات 101- 112
تاریخ انتشار 2012-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023